1)

Let(x, y)be any point on the parabola $y^{2}=4x$. Let P be the point that divides the line segment from (0, 0)to (x, y) in the ratio 1 : 3. Then, the locus of P is


A) $x^{2}=y$

B) $y^{2}=2x$

C) $y^{2}=x$

D) $x^{2}=2y$

Answer:

Option C

Explanation:

By section formula

14122021104_g5.PNG

 $h=\frac{x+0}{4}, k=\frac{y+0}{4}$

 $\therefore$  x-=4h, and y=4k

 Substituting in y2=4x

 $(4k)^{2}=4(4h) \Rightarrow  k^{2}=h$

or    $y^{2}=x$ is required locus