1)

If limx0[1+xlog(1+b2)]1/x=2bsin2θb>0 and θϵ(π,π] , then the value of θ is 


A) ±π4

B) ±π3

C) ±π6

D) ±π2

Answer:

Option D

Explanation:

 Here,  limx0[1+xlog(1+b2)]1/x

                                                  [1 from ]

    elimx0(xlog[1+b2)).1x

  elog(1+b2)=(1+b)2

 Given, 

    limx0(1+xlog(1+b2))1/x=2bsin2θ

   (1+b2)=2bsin2θ

    sin2θ=1+b22b

By AM GM,

b+1b2(b.1b)1/2b2+12b1...(iii)

 From Eqs.(ii) and (iii) , we get  sin2θ=1

   θ=±π2 as θϵ(π,π)