Loading [MathJax]/jax/element/mml/optable/MathOperators.js


1)

If limx0[1+xlog(1+b2)]1/x=2bsin2θb>0 and θϵ(π,π] , then the value of θ is 


A) ±π4

B) ±π3

C) ±π6

D) ±π2

Answer:

Option D

Explanation:

 Here,  limx0[1+xlog(1+b2)]1/x

                                                  [1 from ]

    elimx0(xlog[1+b2)).1x

  elog(1+b2)=(1+b)2

 Given, 

    limx0(1+xlog(1+b2))1/x=2bsin2θ

   (1+b2)=2bsin2θ

    \sin^{2} \theta = \frac{1+b^{2}}{2b}

By AM \geq GM,

\frac{b+\frac{1}{b}}{2}\geq \left( b.\frac{1}{b}\right)^{1/2} \Rightarrow \frac{b^{2}+1}{2b}\geq 1...(iii)

 From Eqs.(ii) and (iii) , we get  \sin^{2} \theta=1

\Rightarrow   \theta = \pm \frac{\pi}{2} as \theta \epsilon (- \pi, \pi )