Answer:
Option D
Explanation:
Here, limx→0[1+xlog(1+b2)]1/x
[1∞ from ]
⇒ elimx→0(xlog[1+b2)).1x
⇒ elog(1+b2)=(1+b)2
Given,
limx→0(1+xlog(1+b2))1/x=2bsin2θ
⇒ (1+b2)=2bsin2θ
∴ sin2θ=1+b22b
By AM ≥ GM,
b+1b2≥(b.1b)1/2⇒b2+12b≥1...(iii)
From Eqs.(ii) and (iii) , we get sin2θ=1
⇒ θ=±π2 as θϵ(−π,π)