Answer:
Option D
Explanation:
Here, limx→0[1+xlog(1+b2)]1/x
[1∞ from ]
⇒ elimx→0(xlog[1+b2)).1x
⇒ elog(1+b2)=(1+b)2
Given,
limx→0(1+xlog(1+b2))1/x=2bsin2θ
⇒ (1+b2)=2bsin2θ
∴ \sin^{2} \theta = \frac{1+b^{2}}{2b}
By AM \geq GM,
\frac{b+\frac{1}{b}}{2}\geq \left( b.\frac{1}{b}\right)^{1/2} \Rightarrow \frac{b^{2}+1}{2b}\geq 1...(iii)
From Eqs.(ii) and (iii) , we get \sin^{2} \theta=1
\Rightarrow \theta = \pm \frac{\pi}{2} as \theta \epsilon (- \pi, \pi )