Answer:
Option B
Explanation:
Equation of normal to hyperbola at $(x_{1},y_{1})$ is
$\frac{a^{2}x}{x_{1}}+\frac{b^{2}y}{y_{1}}=a^{2}+b^{2}$
$\therefore$ at (6,3) , $\frac{a^{2}x}{6}+\frac{b^{2}y}{3}=a^{2}+b^{2}$
It passes throught (9.0)
Now, $\frac{a^{2}.9}{6}=a^{2}+b^{2}$
$\Rightarrow$ $\frac{3a^{2}}{2}-a^{2}=b^{2}\Rightarrow \frac{a^{2}}{b^{2}}=2$
$\therefore$ $e^{2}=1+\frac{b^{2}}{a^{2}}=1+\frac{1}{2} \Rightarrow e=\sqrt{\frac{3}{2}}$