Answer:
Option C
Explanation:
Here $R_{1}= \int_{-1}^{2} xf(x) dx$
Using, $\int_{a}^{b} f(x) dx=\int_{a}^{b} f(a+b-x) dx$
$R_{1}=\int_{-1}^{2} (1-x)f(1-x) dx, $
$[ \because f(x)=f(1-x)]$
$\therefore$ $R_{1}=\int_{-1}^{2} (1-x)f(x) dx$.........(ii)
Given , $R_{2}$ is area bounded by
f(x),x-1 and x=2
$\therefore$ $R_{2}==\int_{-1}^{2} f(x) dx$ ...(iii)
Adding Eqs.(i) and (ii) , we get
$2R= =\int_{-1}^{2} f(x) dx$......(iv)
$\therefore$ From Eqs.(iii) and (iv) , we get
$2R_{1}=R_{2}$