Answer:
Option A
Explanation:
Centre of circle $x^{2}+(y+6)^{2}=1 $ is C (0,-6)
Let the coordinates of point $(2t^{2},4t)$
Now let D=CP
$=\sqrt{(2t^{2})^{2}-(4t+6)^{2}}$
$\Rightarrow D=\sqrt{4t^{4}-16t^{2}+36+48t}$
squaring on both sides
$\Rightarrow D^{2}(t)=4t^{4}+16t^{2}+48t+36$
Let $F(t)=4t^{4}+16t^{2}+48t+36$
for minimum,
F'(t)=0
$\Rightarrow 16t^{3}+32t+48=0$
$\Rightarrow t^{3}+2t+3=0$
$\Rightarrow (t+1)(t^{2}-t+3)=0$
$\Rightarrow t=-1$
Thus, coordinate of point P are (2,-4)
Now,
$CP= \sqrt{2^{2}+(-4+6)^{2}}=\sqrt{4+4}$
$2\sqrt{2}$
Hence the required equation of circle is
$(x-2)^{2}+(y+4)^{2}=(2\sqrt{2}^{2})$
$x^{2}+4-4x+y^{2}+16+8y=8$
$x^{2}+y^{2}-4x+8y+12=0$