Answer:
Option D
Explanation:
Given differential equation is
y(1+xy)dx=xdy
$\Rightarrow y dx+xy^{2}dx=x dy$
$\Rightarrow \frac{x dy -y dx}{y^{2}}=xdx$
$\Rightarrow -\frac{(y dx -x dy)}{y^{2}}=xdx$
$\Rightarrow -d(\frac{x}{y})=xdx$
On integrating both sides , we get
$-\frac{x}{y}=\frac{x^{2}}{2}+C$
It passes through(1,-1)
$1=\frac{1}{2}+C$
$\Rightarrow C=\frac{1}{2}$
Now, from (i)
$-\frac{x}{y}=\frac{x^{2}}{2}+\frac{1}{2}$
$\Rightarrow x^{2}+1=-\frac{2x}{y}$
$\Rightarrow y=-\frac{x^{2}}{2x+1}$
$f(-\frac{1}{2})=\frac{4}{5}$