1)

Two sides of a rhombus are along the lines, x-y+1=0 and 7x-y-5=0. If its diagonals interset at (-1,-2)  then which one of the following is a vertex of this rhombus?


A) (-3,-9)

B) (-3,-8)

C) $(\frac{1}{3},-\frac{8}{3})$

D) $(-\frac{10}{3},-\frac{7}{3})$

Answer:

Option C

Explanation:

 As the  given lines x-y+1=0 and 7x-y-5=0 are not parallel, therefore they represent the adjacent sides of the rhombus

   On solving x-y+1=0 and 7x+y-5=0 , we get x=1 and y=2, thus, one of the vertex is A(1,2)

 

1832020252_AXX.JPG

Let the coordinates of point C be (x,y)

 Then,  $-1=\frac{x+1}{2}$ and $-2=\frac{y+2}{2}$

  $\Rightarrow x+1=-2 $ and $y=-4-2$

$\Rightarrow x=-3$ and $y=-6$

 Hence, coordinates of C =(-3,-6)

Note that vertices B and D will satisfy x-y+1=0 and 7x-y-5=0

 respectively

 Since option(c) satisfies 7x-y-5=0, therefore coordinates of vertex D is $(\frac{1}{3},-\frac{8}{3})$