12345>>
1.

Let f1:R $\rightarrow$R, f2:[0,$\infty$] $\rightarrow$ R, fa : R $\rightarrow$ R

 and f4:R$\rightarrow$ [0,$\infty$] be defined by

   $f_{1}(x)=\begin{cases}|x |& if x < 0\\e^{x} &if  x \geq 0\end{cases}$

        $f_{2}(x)=x^{2},$

$f_{3}(x)=\begin{cases}sin x &if  x < 0\\x &if  x \geq 0\end{cases}$

$f_{4}(x)=\begin{cases}f_{2}(f_{1}(x)) &if  x < 0\\f_{2}(f_{1}(x)) -1 &if  x \geq 0\end{cases}$

2832021264_m6.JPG

 

 


A) $P\rightarrow(iii), Q\rightarrow(i),R\rightarrow(iv),S\rightarrow(ii)$

B) $P\rightarrow(i), Q\rightarrow(iii),R\rightarrow(iv),S\rightarrow(ii)$

C) $P\rightarrow(iii), Q\rightarrow(i),R\rightarrow(ii),S\rightarrow(iv)$

D) $P\rightarrow(i), Q\rightarrow(iii),R\rightarrow(ii),S\rightarrow(iv)$



2.

Match the list I with List II  and selected the correct answer using the codes given below the lists.

2832021384_p3.JPG


A) P:(iv), Q:(iii), R:(ii), S(i)

B) P:(ii), Q:(iv), R:(iii), S(i)

C) P:(iv), Q:(iii), R:(i), S(iI)

D) P:(iI), Q:(iv), R:(i), S(iii)



3.

Match the following

2832021196_p2.JPG


A) P:iii, Q:ii, R:iv, S:i

B) P:ii, Q:iii, R:iv, S:i

C) P:iii, Q:ii, R:i, S:iv

D) P:ii, Q:iii, R:i, S:iv



4.

Given that for each   $a \epsilon (0,1), \lim_{h \rightarrow 0}$ $\int_{h}^{1-h}  t^{-a}(1-t)^{a-1}dt$  exists. Let this limit be g(a). In addition , it is given that the function g(a) differentiable (0,1)

The value of g'(1/2) is 


A) $\frac{\pi}{2}$

B) $ \pi$

C) - $\frac{\pi}{2}$

D) 0



5.

Given that for each   $a \epsilon (0,1), \lim_{h \rightarrow 0}$ $\int_{h}^{1-h} t^{-a}(1-t)^{a-1}dt$  exists. Let this limit be g(a)  . In addition , it is given that the function g(a) differentiable (0,1)

 The value  of   $g(\frac{1}{2})$   is 


A) $\pi$

B) 2$\pi$

C) $\pi$ /2

D) $\pi$/4



12345>>