1)

Let f1:R R, f2:[0,] R, fa : R R

 and f4:R [0,] be defined by

   f1(x)={|x|ifx<0exifx0

        f2(x)=x2,

f3(x)={sinxifx<0xifx0

f4(x)={f2(f1(x))ifx<0f2(f1(x))1ifx0

2832021264_m6.JPG

 

 


A) P(iii),Q(i),R(iv),S(ii)

B) P(i),Q(iii),R(iv),S(ii)

C) P(iii),Q(i),R(ii),S(iv)

D) P(i),Q(iii),R(ii),S(iv)

Answer:

Option D

Explanation:

(P) Plan

 (i)    For such  questions , we need to properly define the functions and then we draw their graphs.

  (ii)  From the graphs,we can examine the function for continuity differentiability , one-one and onto 

   f1(x)={xx<0exx0

        f2(x)=x2,x0

f3(x)={sinxx<0xx0

f4(x)={f2(f1(x))x<0f2(f1(x))1x0

 Now,   f2(f1(x)={x2,x<0e2x,x0

f4={x2,x<0e2x1,x0

 As f4(x) is contiinuous

                f4={2x,x<02e2x,x>0

 2832021755_m2.JPG

 f4(0)  is not defined

 Its range is [0, ]

 Thus, range= codomain =[0,]  thus f4  is onto.

 Also, horizontal line (drawn parallel to x-axis) meets  the curve more than once function is not one-one 

  (Q)  Plan  f3(x)

   differentiable at x=0  and not one-one

  As evident,  from the graph it is  continuous and no sharp turn at X=0 , thus f(x)  is  differentiable  at x=0

2832021695_m3.JPG

 

 Also, a horizontal line intersects the graph more than once.

     It is not one-one

 (R)   Plan f2(f1(x))

 It is neither continuous nor one-one.

 From the graph , it can be observed that the function is not continuous at x=0

  Also , the horizontal line intersect,the curve at more than one point So,  f2(f1(x)) , is not one-one

2832021785_m4.JPG

(S) f2(x)

 It is continuous  and one-one

 As evident from graphs , the function is continuous 

 also, the function is one-one , as any horizontal line  will meet the graph  only one 

 742021789_m1.PNG

P(i),Q(iii),R(ii),S(iv)