Answer:
Option D
Explanation:
Plan $\int_{0}^{a}f(x) dx=\int_{0}^{a} f(a-x) dx $
As g(a) is given, use the numerical value of "a" given in the question and then proved .
Given that ,
$g(a)=\int_{0}^{1} \frac{dt}{t^{a}(1-t)^{1-a}}$
Clearly , g(a)=g(1-a)
[Using $\int_{0}^{a}f(x) dx=\int_{0}^{a} f(a-x)dx]$
Now, differentiate w.r.t 'a' , we get
g'(a) =g'(1-a)(-1)
Now, for $a=-\frac{1}{2}$ , we have
$-g'(\frac{1}{2})=g'(\frac{1}{2})$
So, $g'(\frac{1}{2})=0$