Processing math: 100%


1)

Given that for each   aϵ(0,1),limh0 1hhta(1t)a1dt  exists. Let this limit be g(a). In addition , it is given that the function g(a) differentiable (0,1)

The value of g'(1/2) is 


A) π2

B) π

C) - π2

D) 0

Answer:

Option D

Explanation:

 Plan    a0f(x)dx=a0f(ax)dx

 As g(a) is given, use the numerical value of "a" given in the question and then proved .

 Given that ,

     g(a)=10dtta(1t)1a

 Clearly  , g(a)=g(1-a)

  [Using   a0f(x)dx=a0f(ax)dx]

 Now, differentiate w.r.t 'a' , we get

   g'(a) =g'(1-a)(-1)

 Now, for    a=12 , we have

   g(12)=g(12)

  So,  g(12)=0