Answer:
Option D
Explanation:
(P) Plan
(i) A polymer satisfying the given conditions is taken
(ii) The other conditions are also applied and the number of polynomial is taken out
Let f(x) =ax2+bx+c
f(0)= 0 ⇒ c=0
Now, ∫10f(x)dx=1
⇒ (ax33+bx22)10=1
⇒ a3+b2=1
⇒ 2a+3b=6
As a,b are non-negative integers
So, a=0, b=2, or a=3, b=0
So, f(x)=2x or f(x)=3x2
(Q) Plan such type of questions are converted into only sine or cosine expression and then the number of points of maximum in given interval are obtained
f(x) = sin(x2)+ cos (x2)
= √2[1√2cos(x2)+1√2sin(x2)]
= √2[cosx2cosπ4+sinπ4sin(x2)]
=√2cos(x2−π4)
For maximum value
x2−π4=2nπ
⇒ x2=2nπ+π4
⇒ x=±√π4,forn=0
x=±√9π4, for n=1
So, f(x) attains maximum at 4 points in (−√13,√13)
(R) Plan
(i) ∫a−af(x)dx=∫a−af(−x)dx
(ii) ∫a−af(x)dx=2∫a0f(x)dx
f(-x) =f(x) , i.e, f is an even function
I=∫2−23x21+exdx
I=∫2−23x21+e−xdx
2I=∫2−2(3x21+ex+3x2(ex)ex+1)dx
2I=∫2−23x2dx
⇒ 2I=2∫203x2dx
I=[x3]20=8
(S) Plan ∫a−af(x)dx=0
if f(-x)= -f(x)
i.e, f(x) is an odd function
Let f(x)= cos 2x log(1+x1−x)
f(-x)= cos 2x log(1−x1+x)
=-f(x)
Hence, f(x) is an odd function.
So, ∫1/2−1/2f(x)dx=0
P:ii, Q:iii, R:i, S:iv