Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Match the following

2832021196_p2.JPG


A) P:iii, Q:ii, R:iv, S:i

B) P:ii, Q:iii, R:iv, S:i

C) P:iii, Q:ii, R:i, S:iv

D) P:ii, Q:iii, R:i, S:iv

Answer:

Option D

Explanation:

(P) Plan

 (i)  A polymer satisfying  the given conditions is taken

  (ii)  The other  conditions are also applied and the number of polynomial  is taken out

 Let f(x)  =ax2+bx+c

   f(0)= 0 c=0

 Now, 10f(x)dx=1

         (ax33+bx22)10=1

    a3+b2=1

       2a+3b=6

 As a,b are non-negative integers

 So, a=0, b=2,  or a=3, b=0

 So, f(x)=2x  or f(x)=3x2

(Q)   Plan such type of questions are converted into only sine or cosine expression and then the number of points of maximum in given interval are obtained

     f(x)  = sin(x2)+ cos (x2)

       =  2[12cos(x2)+12sin(x2)]

     =    2[cosx2cosπ4+sinπ4sin(x2)]

=2cos(x2π4)

 For maximum value

         x2π4=2nπ

       x2=2nπ+π4

    x=±π4,forn=0

   x=±9π4,    for n=1

 So, f(x) attains  maximum at 4 points  in   (13,13)

  (R)   Plan

  (i)    aaf(x)dx=aaf(x)dx

  (ii)  aaf(x)dx=2a0f(x)dx

    f(-x) =f(x)  , i.e, f is an even function

      I=223x21+exdx

  I=223x21+exdx

2I=22(3x21+ex+3x2(ex)ex+1)dx

    2I=223x2dx

       2I=2203x2dx

      I=[x3]20=8

  (S)   Plan    aaf(x)dx=0

  if f(-x)= -f(x)

 i.e, f(x) is an odd function

  Let f(x)= cos 2x  log(1+x1x)

f(-x)= cos 2x  log(1x1+x)

  =-f(x)

 Hence, f(x)  is an odd function.

 So,   1/21/2f(x)dx=0

 P:ii, Q:iii, R:i, S:iv