Processing math: 100%


1)

Match the list I with List II  and selected the correct answer using the codes given below the lists.

2832021384_p3.JPG


A) P:(iv), Q:(iii), R:(ii), S(i)

B) P:(ii), Q:(iv), R:(iii), S(i)

C) P:(iv), Q:(iii), R:(i), S(iI)

D) P:(iI), Q:(iv), R:(i), S(iii)

Answer:

Option A

Explanation:

(P)   y=cos(3cos1x)

     y=3sin(3cos1x)1x2

1x2y=3sin(3cos1x)

      x1x2y+1x2  y''

  = 3cos(3cos1x).31x2

     xy+(1x2)y=9y

  1y[(x21)y+xy]=9

(Q)  Plan

  (i) Angle subtended by a side of n sided regular polygon at the centre =  2πn

  (ii)  |a xb|=|a||b| sinθ

(iii) |a.b|=|a||b| cosθ

  (iv)  tanθ=tanαθ=nπ+α,nϵZ

 consider a polygon of (S) n sides with centre at origin

2832021407_m1.JPG

 Let |OA1|=|OA2|=......|OAn|

 =r(say)

 |ak  x ak+1|=  r2sin2πn

 |ak  .ak+1|=  r2cos2πn

|n1k=1ak×ak+1|=|n1k=1ak.ak+1|

  r2(n1)sin2πn=r2(n1)cos2πn

tan2πn=1

    tan2πn=tanπ4

    2πn=tπ+π4,tϵZ

     2n=4t+14

       n=84t+1,tϵZ

    the minimum  value of n=8

 (R)   Plan Equation of  normal at the point 

   (acosθ,bsinθ)   of ellipse   x2a2+y2b2=1 is 

given by

axsecθbycosecθ=a2b2

Equation of normal is

 6xsecθ3ycosecθ=3

 Its slope is

  6secθ3cosecθ=1

 (    slope of normal = slope of line perpendicular to

  x+y=8

   tanθ=12

 So, normal is

  6×323×3y=3

 3x-3y=3

    x-y=1

 As it passes through (h,l)

 So, h-1=1

    h=2

 (S) Plan

tan1x+tan1y=tan1(x+y1xy)

 Given equation,

 tan1(12x+1)+tan1(14x+1)=tan1(2x2)

= tan1(12x+1+14x+111(2x+1)(4x+1))=tan1(2x2)

tan1(6x+2(2x+1)(4x+1)1)=tan1(2x2)

    3x+14x3+3x=2x2

    3x3+x2=8x2+6x

    x(3x27x6)=0

     x(x3)(3x+2)=0

    x=0,23,3

 So, only positive solution is x=3

   P:(iv), Q:(iii), R:(ii), S(i)