Loading [MathJax]/jax/element/mml/optable/MathOperators.js


1)

Given that for each   aϵ(0,1),limh0 1hhta(1t)a1dt  exists. Let this limit be g(a)  . In addition , it is given that the function g(a) differentiable (0,1)

 The value  of   g(12)   is 


A) π

B) 2π

C) π /2

D) π/4

Answer:

Option A

Explanation:

Plan   dxa2x2=sin1(xa)+c

 As g(a)  is defined in the question, first use the numerical value of 'a' given in the question and then proved.

 Given, g(a) =limh01hhta(1t)a1dt

     g(1/2)

     =\lim_{h \rightarrow 0+}\int_{h}^{1-h} t^{-1/2}(1-t)^{-1/2}dt

  = \int_{0}^{1} \frac{dt}{\sqrt{t-t^{2}}}=\int_{0}^{1} \frac{dt}{\sqrt{\frac{1}{4}-\left(t-\frac{1}{2}\right)^{2}}}

   = \sin^{-1}\left[\left(\frac{t-1/2}{1/2}\right)\right]^{1}_{0}

       = \sin^{-1}1-\sin^{-1}(-1)=\pi