Answer:
Option A
Explanation:
Plan ∫dx√a2−x2=sin−1(xa)+c
As g(a) is defined in the question, first use the numerical value of 'a' given in the question and then proved.
Given, g(a) =limh→0∫1−hht−a(1−t)a−1dt
∴ g(1/2)
=\lim_{h \rightarrow 0+}\int_{h}^{1-h} t^{-1/2}(1-t)^{-1/2}dt
= \int_{0}^{1} \frac{dt}{\sqrt{t-t^{2}}}=\int_{0}^{1} \frac{dt}{\sqrt{\frac{1}{4}-\left(t-\frac{1}{2}\right)^{2}}}
= \sin^{-1}\left[\left(\frac{t-1/2}{1/2}\right)\right]^{1}_{0}
= \sin^{-1}1-\sin^{-1}(-1)=\pi