<<45678>>
31.

A circle S passes through the point (0,1)  ans is othogonal to the circles  (x-1)2+y2=16  and x2+y2 =1 . Then  , 


A) radius of S is 8

B) radius of S is 7

C) centre of S is (-7,1)

D) centre of S is (-8,1)



32.

Let   $f: \left(-\frac{\pi}{2},\frac{\pi}{2}\right)\rightarrow R$  be given by  $f(x)=[log(\sec x+\tan x)]^{3}$  Then,


A) f(x) is an odd function

B) f(x) is a one-one function

C) f(x) is an onto function

D) f(x) is an even function



33.

Let   $f:(0,\infty)\rightarrow R$   be given by $f(x)= \int_{1/x}^{x} e^{-(t+\frac{1}{t})}\frac{dt}{t}$  Then


A) f(x) is monotonoically increasing on [0,$\infty$]

B) f(x) is montonically decreasing on [0,1]

C) $f(x)+f\left(\frac{1}{x}\right)=0 $ for all $x \in (0,\infty)$

D) $f(2^{x})$ is an odd function of x or R



34.

Let M and N  be two 3 x3  matrices such that MN=NM  . further , If   $M\neq N^{2}$  and $M^{2}= N^{4}$   then


A) determinant of ($M^{2}+M N^{2}$ ) IS 0

B) there is a 3 x 3 non zero matrix U such that ($M^{2}+M N^{2}$ ) U is zero matrix

C) determination of( $M^{2}+M N^{2}) $ $\geq 1$

D) for a 3x3 matrix U. if ( $M^{2}+M N^{2}) $ U equal the zero matrix, then U is the zero matrix



35.

From  a point  $P(\lambda,\lambda,\lambda)$  perpendicular PQ and PR are drawn  respectively on the  lines y=x, z=1 and y=-x, z=-1. If P is such that  $\angle QPR$    is a right angle , then the possible value(s) of   $\lambda$  is(are)


A) $\sqrt{2}$

B) 1

C) -1

D) -$\sqrt{2}$



<<45678>>