1)

A circle S passes through the point (0,1)  ans is othogonal to the circles  (x-1)2+y2=16  and x2+y2 =1 . Then  , 


A) radius of S is 8

B) radius of S is 7

C) centre of S is (-7,1)

D) centre of S is (-8,1)

Answer:

Option B,C

Explanation:

Plan

    (i)  The general equation  of a circle is  

              $x^{2}+y^{2}+2gx+2fy+c=0$

  where, centre and radius are given by (-g, -f)  and   $\sqrt{g^{2}+f^{2}-c}$  respectively.

(ii)  If the two circles 

$x^{2}+y^{2}+2g_{1}x+2f_{1}y+c_{1}=0$  and

   $x^{2}+y^{2}+2g_{2}x+2f_{2}y+c_{2}=0$   are orthogonal  , then 

    $2g_{1}g_{2}+2f_{1}f_{2}=c_{1}+c_{2}$

 Let circle be

                 $x^{2}+y^{2}+2gx+2fy+c=0$

 It passes through (0,1)

 $\therefore$         1+2f+c=0         ........(i)

Orthogonal with

           $x^{2}+y^{2}-2x-15=0$

          2g(-1)=c-15

      $\Rightarrow$            c=15-2g          .............(ii)

 Orthogonal with

$x^{2}+y^{2}-1=0$

   c=1      ...........(iii)

$\Rightarrow$         g=7  and f=-1

 Centre is (-g, -f) =(-7,1)

 Radius= $\sqrt{g^{2}+f^{2}-c}=\sqrt{49+1-1}=7$