Answer:
Option A,C,D
Explanation:
Plan (i) f(x)=∫ψ(x)ϕ(x)f(t)dt then
ddx[I(x)]=f{ψ(x)}{ddxψ(x)} - f{ϕ(x)}{ddxϕ(x)}
(ii) if f'(x) > o, ∀x∈[a,b] then f(x) is monotonically increasing on [a,b]
(iii) ∫baf(x)dx=−∫abf(x)dx
(iv) if f(-x) =-f(x) , ∀x∈R , then f(x) is an odd function of x on R
Given,
f(x)=∫x1/xe−(t+1t)tdt
f′(x)=1.e−(x+1x)x−(−1x2)e−(1x+x)1/x
=e−(x+1x)x+e−(x+1x)x
=2e−(x+1x)x
As, f'(x)>0, ∀x∈(0,∞)
∴ f(x) is monotonically increasing on (0, ∞)
⇒ options (a) is correct and (b) is wrong.
Now, f(x)+f(1x)=∫x1/xe−(t+1t)tdt+∫1/xxe−(t+1t)tdt
= 0, ∀x∈(0,∞)
Now, let
g(x) =f(2x)= ∫2x2−xe−(t+1t)tdt
g(-x)=f(2-x)
=∫2−x2xe−(t+1t)tdt
= -g(x)
∴ f(2x) is an odd function.