Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let   f:(0,)R   be given by f(x)=x1/xe(t+1t)dtt  Then


A) f(x) is monotonoically increasing on [0,]

B) f(x) is montonically decreasing on [0,1]

C) f(x)+f(1x)=0 for all x(0,)

D) f(2x) is an odd function of x or R

Answer:

Option A,C,D

Explanation:

Plan  (i)  f(x)=ψ(x)ϕ(x)f(t)dt    then

         ddx[I(x)]=f{ψ(x)}{ddxψ(x)} - f{ϕ(x)}{ddxϕ(x)}

(ii)     if f'(x) > o,  x[a,b]  then f(x) is monotonically increasing on [a,b]

 (iii)   baf(x)dx=abf(x)dx

 (iv)     if f(-x) =-f(x) , xR   , then f(x) is an odd function of x on R

Given,

           f(x)=x1/xe(t+1t)tdt

  f(x)=1.e(x+1x)x(1x2)e(1x+x)1/x

   =e(x+1x)x+e(x+1x)x

                                 =2e(x+1x)x

 As, f'(x)>0,   x(0,)

    f(x)  is monotonically increasing on (0, )

      options (a) is correct and (b) is wrong.

  Now,     f(x)+f(1x)=x1/xe(t+1t)tdt+1/xxe(t+1t)tdt

                                           = 0, x(0,)

Now, let

  g(x) =f(2x)= 2x2xe(t+1t)tdt

 g(-x)=f(2-x)

                        =2x2xe(t+1t)tdt

                    = -g(x)

       f(2x)  is an odd function.