Answer:
Option A,B
Explanation:
Plan
(i)_ If A and B are two non-zero matrices and AB= BA then
(A-B) (A+B)= A2-B2
(ii) The determinant of the product of the ,matrices is equal to product of their individual determinants
i.e, |AB|=|A||B|
Given M2=N4
$\Rightarrow$ $ M^{2}-N^{4}=0$
$\Rightarrow$ $(M-N^{2})(M+N^{2})=0$
(as MN=NM)
Also, $M\neq N^{2}$
$\Rightarrow$ M+N2=0
$\Rightarrow$ Det (M+N2 )=0
Also, Det (M+MN2 )
= (Det M) ((Det (M+N2)
= (Det M) (0)= 0
As, Det (M2+MN2)=0
Thus, there exist non-zero matrix U such that (M2+MN2)U=0