1)

Let M and N  be two 3 x3  matrices such that MN=NM  . further , If   MN2  and M2=N4   then


A) determinant of (M2+MN2 ) IS 0

B) there is a 3 x 3 non zero matrix U such that (M2+MN2 ) U is zero matrix

C) determination of( M2+MN2) 1

D) for a 3x3 matrix U. if ( M2+MN2) U equal the zero matrix, then U is the zero matrix

Answer:

Option A,B

Explanation:

Plan

(i)_  If A and B  are two non-zero matrices and AB= BA  then

 (A-B) (A+B)= A2-B2

(ii)   The determinant of the product of the ,matrices is equal to product of their individual determinants

    i.e,  |AB|=|A||B|

 Given  M2=N4

              M2N4=0

        (MN2)(M+N2)=0

                                                         (as MN=NM)

 Also,    MN2

         M+N2=0

     Det (M+N2 )=0

 Also,                 Det (M+MN2 )

   =  (Det M) ((Det (M+N2)

    = (Det M)  (0)= 0

As,  Det (M2+MN2)=0

Thus, there exist non-zero matrix  U such that (M2+MN2)U=0