1)

Let   $f: \left(-\frac{\pi}{2},\frac{\pi}{2}\right)\rightarrow R$  be given by  $f(x)=[log(\sec x+\tan x)]^{3}$  Then,


A) f(x) is an odd function

B) f(x) is a one-one function

C) f(x) is an onto function

D) f(x) is an even function

Answer:

Option A,B,C

Explanation:

Plan 

 (i)  f '(x)>0,   $\forall x \in(a,b)$    , then f(x) is an increasing function in (a,b)  and thus f(x) is one-one function in (a,b)

 (ii) if range of f(x)= codomain of f(x) , then f(x) is an  onto function.

 (iii) A function f(x)   is said to be odd function , if f(-x)= -f(x)   $\forall x \in R$, i.e, f(-x)+f(x)=0, $\forall x \in R$,

  $f(x)=[ln(\sec x+\tan x)]^{3}$

                      

                 $f'(x)=\frac{3 [ln(\sec x+\tan x)]^{2}(\sec x \tan x+\sec^{2}x)}{(\sec x+\tan x)}$

                    $f'(x)=3\sec x[ln(\sec x+\tan x)]^{2}>0,$

                                                                         $\forall x \in(-\frac{\pi}{2},\frac{\pi}{2})$

 f(x)  is an increasing function.

  $\therefore$    f(x)  is an one-one function.

  $(\sec x+\tan x)=\tan (\frac{\pi}{4}+\frac{x}{2})$

       as   $x \epsilon (-\frac{\pi}{2},\frac{\pi}{2})$   then

     $0< \tan  (\frac{\pi}{4}+\frac{x}{2})< \infty$

  0  < sec x +tan x < $\infty$

$\Rightarrow$    -$\infty$  < (ln (sec x+tan x) <$\infty$

                        -$\infty  < [ln(sec x+tan x)]^{3} <  \infty$

$\Rightarrow$   - $\infty$ < f(x0<  $\infty$

 Range of f(x)  is R and thus f(x) is an onto function.

   $f(-x)= [ln(\sec x-\tan x)]^{3}$

                     =   $\left[ln\left(\frac{1}{\sec x+\tan x}\right)\right]^{3}$

   $f(-x)=-[ln(\sec x-\tan x)]^{3}$

                          f(x)+f(-x)=0

$\Rightarrow$        f(x)  is an odd function.