<<345678>>
26.

Let  $f:R\rightarrow R $   and     $g:R\rightarrow R $ be respectively given by f(x)=|x|+1 and g(x)=x2+1

 Define  h:R→ R by   $\begin{cases}max(f(x),g(x)) &if x \leq 0\\min(f(x),g(x)) &if x > 0\end{cases}$

The number  of points at which h(x) is not differentiable is 


A) 4

B) 3

C) 0

D) 2



27.

The largest value of the non-negative integer a for which $\lim_{x \rightarrow 1}\left\{\frac{-ax+\sin(x-1)+a}{x+\sin(x-1)-1}\right\}^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4} is 


A) 4

B) 2

C) 1

D) 0



28.

Let   $f:[0,4\pi]\rightarrow [0,\pi]$     be defined by $ f(x)=\cos^{-1}(\cos x)$  . The number of points  $x \in [0,4\pi]$  satisfying the equation   $f(x)=\frac{10-x}{10}$   is 


A) 4

B) 2

C) 3

D) 1



29.

The  slope of the tangent to the curve   $(y-x^{5})^{2}=x(1+x^{2})^{2}$ at the point (1,3) is 


A) 8

B) 6

C) 4

D) 7



30.

Let   $a \in R $    and   $f:R\rightarrow R$   be given by f(x)= x-5x+a,Then,

  


A) f(x) has three real roots , if a&gt; 4

B) f(x) has only one real root, if a&gt;4

C) f(x) has three real roots , if a&lt; -4

D) f(x) has three real roots , if -4 &lt;a&lt; 4



<<345678>>