Answer:
Option D
Explanation:
Plan limx→0sinxx=1
Given, limx→1{sin(x−1)+a(1−x)(x−1)+sin(x−1)}(1+√x)(1−√x)(1−√x)=14
limx→1{sin(x−1)(x−1)−a1+sin(x−1)(x−1)}1+√x=14
⇒ (1−a2)2=14
⇒ (a-1)2=1
⇒ a=2 or 0
But for a=2 base of above limit approaches -1/2 and exponent approaches to 2 and since base cannot be negative. Hence limit does not exist