Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

The largest value of the non-negative integer a for which $\lim_{x \rightarrow 1}\left\{\frac{-ax+\sin(x-1)+a}{x+\sin(x-1)-1}\right\}^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4} is 


A) 4

B) 2

C) 1

D) 0

Answer:

Option D

Explanation:

Plan limx0sinxx=1

 Given,  limx1{sin(x1)+a(1x)(x1)+sin(x1)}(1+x)(1x)(1x)=14

 limx1{sin(x1)(x1)a1+sin(x1)(x1)}1+x=14

       (1a2)2=14

    (a-1)2=1

      a=2 or 0

 But for a=2 base of above limit approaches -1/2 and exponent approaches to 2 and since base cannot be negative. Hence limit does not exist