Answer:
Option A
Explanation:
Concept involved (i) equation of the plane through the intersection of two planes.
i.e, (a1x+b1y+c1z+d1)+λ(a2x+b2y+c2z+d2)=0
(ii) Distance of a point (x1,y1,z1) from ax+by+cz+d=0
⇒ |ax1+by1+cz1+d|√a2+b2+c2
Sol. Equation of plane passing through intersection of two planes
x+2y+3z=2 and x-y+z=3 is
⇒ (x+2y+3z-2)+λ(x−y+z−3)=0
⇒ (1+λ)x+(2−λ)y+(3+λ)z−(2+3λ)=0
whose distance from (3,1,-1) is 2√3
⇒ |3(1+λ)+1.(2−λ)−1(3+λ)−(2+3λ)|√(1+λ)2+(2−λ)2+(3+λ)2=2√3
⇒ |−2λ|√3λ2+4λ+14=2√3
⇒ 3λ2=3λ2+4λ+14⇒λ=−72
∴ (1−72)x+(2+72)y+(3−72)z−(2−212)=0
⇒ −5x2+112y−12z+172=0
or 5x+11y+z-17=0