Answer:
Option A
Explanation:
Concept involved (i) equation of the plane through the intersection of two planes.
i.e, $(a_{1}x+b_{1}y+c_{1}z+d_{1})+\lambda (a_{2}x+b_{2}y+c_{2}z+d_{2})=0$
(ii) Distance of a point $(x_{1},y_{1},z_{1})$ from ax+by+cz+d=0
$\Rightarrow$ $\frac{|ax_{1}+by_{1}+cz_{1}+d|}{\sqrt{a^{2}+b^{2}+c^{2}}}$
Sol. Equation of plane passing through intersection of two planes
$x+2y+3z=2$ and x-y+z=3 is
$\Rightarrow$ (x+2y+3z-2)+$\lambda (x-y+z-3)=0$
$\Rightarrow$ $(1+\lambda)x+(2- \lambda)y+(3+\lambda)z-(2+3 \lambda)=0$
whose distance from (3,1,-1) is $\frac{2}{\sqrt{3}}$
$\Rightarrow$ $\frac{ |3(1+\lambda )+1.(2-\lambda)-1(3+\lambda)-(2+3 \lambda)|}{\sqrt{(1+\lambda)^{2}+(2-\lambda)^{2}+(3+\lambda})^{2}}=\frac{2}{\sqrt{3}}$
$\Rightarrow$ $\frac{|-2 \lambda|}{\sqrt{3 \lambda^{2}+4 \lambda+14}}=\frac{2}{\sqrt{3}}$
$\Rightarrow$ $3 \lambda^{2}=3 \lambda^{2}+4 \lambda+14 \Rightarrow \lambda =-\frac{7}{2}$
$\therefore$ $\left(1-\frac{7}{2}\right)x+\left(2+\frac{7}{2}\right)y+\left(3-\frac{7}{2}\right)z-\left(2-\frac{21}{2}\right)=0$
$\Rightarrow$ $-\frac{5x}{2}+\frac{11}{2}y-\frac{1}{2} z+\frac{17}{2}=0$
or 5x+11y+z-17=0