Answer:
Option A
Explanation:
We have ,
f(x)= x log x
f'(x)= 1+log x
For maxima or minima , put f '(x)= 0
∴ 1+ log x=0
⇒ logx =-1
⇒ x = e-1
Now, f "(x) = 1x
⇒ f″(e−1)=1e−1,e>0
∴ f(x) is decreasing
Hence, minimum value of f(x) at x= e-1 is
⇒ f(e−1)=e−1loge−1=1e(−loge)=−1e