1)

The minimum value of the function f(x)= x log x is  


A) $-\frac{1}{e}$

B) -e

C) $\frac{1}{e}$

D) e

Answer:

Option A

Explanation:

We have ,

 f(x)= x log x

f'(x)= 1+log x

For maxima or minima , put f '(x)= 0

 $\therefore$    1+ log x=0

 $\Rightarrow$  logx =-1

 $\Rightarrow$  x = e-1

 Now, f "(x) = $\frac{1}{x}$

 $\Rightarrow$    $ f^{''}(e^{-1})=\frac{1}{e^{-1}}, e >0$

 $\therefore$ f(x) is decreasing

 Hence, minimum value of f(x) at x= e-1 is

 $\Rightarrow $     $f^{}(e^{-1})=e^{-1}\log e^{-1}=\frac{1}{e}(-log e)=-\frac{1}{e}$