Processing math: 100%


1)

The general solution of differential equation dxdy=cos(x+y)  is


A) tan(x+y2)=y+C

B) tan(x+y2)=x+C

C) cot(x+y2)=y+C

D) cot(x+y2)=x+C

Answer:

Option A

Explanation:

We have ,   dxdy=cos(x+y)

 Put , x+y=v

      dxdy+1=dvdy

     dxdy=dvdy1

   Equation  becomes

 dvdy1=cosv

  dvdy=1+cosv

   dv1+cosv+dy

   dv2cos2v2=dy

 On integrating , we get

12sec2v2dv=dy

       tanv2=y+C

     tan(x+y2)=y+C     [   v=x+y]