1) The general solution of differential equation dxdy=cos(x+y) is A) tan(x+y2)=y+C B) tan(x+y2)=x+C C) cot(x+y2)=y+C D) cot(x+y2)=x+C Answer: Option AExplanation:We have , dxdy=cos(x+y) Put , x+y=v ⇒ dxdy+1=dvdy ⇒ dxdy=dvdy−1 ∴ Equation becomes dvdy−1=cosv ⇒ dvdy=1+cosv ⇒ dv1+cosv+dy ⇒ dv2cos2v2=dy On integrating , we get 12∫sec2v2dv=∫dy ⇒ tanv2=y+C ⇒ tan(x+y2)=y+C [∴ v=x+y]