Answer:
Option D
Explanation:
Given , n=10 and p=0.4
$\therefore$ q=1-p=1-0.4=0.6
E(x) = np=10(0.4)=4
$\sigma^{2}$ = npq= 10(0.4)(0.6)=2.4
We know that,
$\sigma^{2}= E(X^{2})-(E(X))^{2}$
$\therefore$ $ E(X^{2})=\sigma^{2}+(E(X))^{2}$
$ \Rightarrow$ $ E(X^{2})=24+(4)^{2}$
=2.4+16=18.4