Answer:
Option C
Explanation:
Let angles $\alpha, \beta, \gamma$ makes positive direction of X,Y and Z axes, respectively,
$\therefore$ $\cos^{2}\alpha+\cos^{2}\beta+\cos^{2}\gamma=1$
Here, $\alpha$= $120^{0}$ and $\gamma$ =$60^{0}$
$ \therefore$ $\cos^{2}120^{0}+\cos^{2}\beta+\cos^{2}60^{0}=1$
$\Rightarrow$ $(\frac{1}{2})^{2}+\cos^{2}\beta+(\frac{1}{2})^{2}=1$
$\Rightarrow$ $\cos^{2}\beta=1-\frac{1}{2}=\frac{1}{2}$
$\Rightarrow$ $\cos^{}\beta=\frac{\pm 1}{\sqrt{2}}$
$\Rightarrow$ $\beta$=$135^{0}$