<<23456>>
21.

The equation of liner equality inclined to coordinate axes and passing through (-3,2,-5) is 


A) $\frac{x+3}{1}=\frac{y-2}{1}=\frac{z+5}{1}$

B) $\frac{x+3}{-1}=\frac{y-2}{1}=\frac{z+5}{-1}$

C) $\frac{x+3}{-1}=\frac{y-2}{1}=\frac{z+5}{1}$

D) $\frac{x+3}{-1}=\frac{2-y}{1}=\frac{z+5}{-1}$



22.

If f(x) =f(t)  and  y= g(t) are differentiable functions of t, then $\frac{d^{2}y}{dx^{2}}$  is 


A) $\frac{f&#39;(t).g&quot;(t)-g&#39;(t).f&quot;(t)}{[f&#39;(t)]^{3}}$

B) $\frac{f&#39;(t).g&quot;(t)-g&#39;(t).f&quot;(t)}{[f&#39;(t)]^{2}}$

C) $\frac{g&#39;(t).f&quot;(t)-f&#39;(t).g&quot;(t)}{[f&#39;(t)]^{3}}$

D) $\frac{g&#39;(t).f&quot;(t)+f&#39;(t).g&quot;(t)}{[f&#39;(t)]^{3}}$



23.

The solution of the differential equation $\frac{dy}{dx}=\tan\left(\frac{y}{x}\right)+\frac{y}{x}$  is 


A) $\cos\left(\frac{y}{x}\right)=cx$

B) $\sin\left(\frac{y}{x}\right)=cx$

C) $\cos\left(\frac{y}{x}\right)=cy$

D) $\sin\left(\frac{y}{x}\right)=cy$



24.

If the function  $f(x) =\left[ \tan \left(\frac{\pi}{4}+x\right)\right]^{1/x}$    for x≠0 is K for x=0 continuous at x =0, then K = ?


A) e

B) $e^{-1}$

C) $e^{2}$

D) $e^{-2}$



25.

O(0,0) , A(1,2) , B(3,4)  are the vertices of $\triangle OAB$. The joint equation of the altitude and median drawn from O is 


A) $x^{2}+7xy-y^{2}=0$

B) $x^{2}+7xy+y^{2}=0$

C) $3x^{2}-xy-2y^{2}=0$

D) $3x^{2}+xy-2y^{2}=0$



<<23456>>