Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If f(x) =f(t)  and  y= g(t) are differentiable functions of t, then d2ydx2  is 


A) \frac{f'(t).g"(t)-g'(t).f"(t)}{[f'(t)]^{3}}

B) \frac{f'(t).g"(t)-g'(t).f"(t)}{[f'(t)]^{2}}

C) \frac{g'(t).f"(t)-f'(t).g"(t)}{[f'(t)]^{3}}

D) \frac{g'(t).f"(t)+f'(t).g"(t)}{[f'(t)]^{3}}

Answer:

Option A

Explanation:

 Given , x=f(t) and y=g(t)

 On digfferentiating  both sides w.r.t 't' , we get

dxdt=f(t)and  dydt=g(t)

 We know that,  dydx=dydtdxdt

     dydx=g(t)f(t)

 Again, differentiating both sides w.r.t 'x' , we get

 d2ydx2=f(t).g(t)g(t).f(t)(f(t))2.dtdx

    =f(t).g(t)g(t).f(t)(f(t))2.1f(t)

                               =f(t).g(t)g(t).f(t)(f(t))3