Answer:
Option A
Explanation:
Given , x=f(t) and y=g(t)
On digfferentiating both sides w.r.t 't' , we get
dxdt=f′(t)and dydt=g′(t)
We know that, dydx=dydtdxdt
⇒ dydx=g′(t)f′(t)
Again, differentiating both sides w.r.t 'x' , we get
d2ydx2=f′(t).g″(t)−g′(t).f″(t)(f′(t))2.dtdx
=f′(t).g″(t)−g′(t).f″(t)(f′(t))2.1f′(t)
=f′(t).g″(t)−g′(t).f″(t)(f′(t))3