1)

The equation of liner equality inclined to coordinate axes and passing through (-3,2,-5) is 


A) $\frac{x+3}{1}=\frac{y-2}{1}=\frac{z+5}{1}$

B) $\frac{x+3}{-1}=\frac{y-2}{1}=\frac{z+5}{-1}$

C) $\frac{x+3}{-1}=\frac{y-2}{1}=\frac{z+5}{1}$

D) $\frac{x+3}{-1}=\frac{2-y}{1}=\frac{z+5}{-1}$

Answer:

Option B

Explanation:

Let (x1,y1,z1) =(-3,2,-5)

It is also given that, the line is equally inclined to coordinate axes,

 $\therefore$    l=-1,m=1 and n=-1

 We know that , the equation of line passing through (x1,y1,z1) and having cosines l,m, n is 

$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$

$\therefore$      $\frac{x+3}{-1},\frac{y-2}{1},\frac{z+5}{-1}$