Answer:
Option B
Explanation:
Given,
dydx=tan(yx)+yx ..........................(i)
Clearly , the given different equation is homogeneous
On putting y=Vx
dydx=V+xdVdx in Eq.(i) we get
V+xdVdx=tanV+V
⇒ xdVdx=tanV
⇒ 1tanVdV=1xdx
On integrating both sides, we get
∫1tanVdV=∫1xdx
⇒ ∫cotVdV=logx+logc
⇒ log sin x = log x+ log c
⇒ log sin V= log(xc)
⇒ sin v=xc
∴ sin(yx)=xc