1)

The solution of the differential equation dydx=tan(yx)+yx  is 


A) cos(yx)=cx

B) sin(yx)=cx

C) cos(yx)=cy

D) sin(yx)=cy

Answer:

Option B

Explanation:

 Given, 

 dydx=tan(yx)+yx ..........................(i)

 Clearly , the given different equation is homogeneous

 On putting y=Vx

dydx=V+xdVdx     in Eq.(i) we get

 V+xdVdx=tanV+V

     xdVdx=tanV

       1tanVdV=1xdx

On integrating both sides, we get

1tanVdV=1xdx

   cotVdV=logx+logc

     log sin x = log x+ log c

   log sin V= log(xc)

   sin v=xc

     sin(yx)=xc