Loading [MathJax]/jax/element/mml/optable/MathOperators.js


1)

If the function  f(x)=[tan(π4+x)]1/x    for x≠0 is K for x=0 continuous at x =0, then K = ?


A) e

B) e1

C) e2

D) e2

Answer:

Option C

Explanation:

We have , f(x)=[tan(π4+x)]1/x =K

 Since , f(x)  is continuous at x=0, then

 f(o)=limx0f(x)

  =limx0[tan(π4+x)]1/x

K=limx0[1+tanx1tanx]1/x    [1 form]

=elimx0[1+tanx1tanx1].1x

   =elimx0[2tanx1tanx].1x

 =e2limx0tanxx.limx011tanx

                                     [

 \therefore      K=e^{2.1(\frac{1}{1-0})}=e^{2}