Answer:
Option C
Explanation:
We have , f(x)=[tan(π4+x)]1/x =K
Since , f(x) is continuous at x=0, then
f(o)=limx→0f(x)
=limx→0[tan(π4+x)]1/x
⇒K=limx→0[1+tanx1−tanx]1/x [1∞ form]
=elimx→0[1+tanx1−tanx−1].1x
=elimx→0[2tanx1−tanx].1x
=e2limx→0tanxx.limx→011−tanx
[∵
\therefore K=e^{2.1(\frac{1}{1-0})}=e^{2}