<<12345>>
16.

If   $\alpha=\int_{0}^{1} e^{(9x+3\tan^{-1}x)}\left(\frac{12+9x^{2}}{1+x^{2}}\right)dx$, where tan-1 x takes only principal values, then the value of   $\log_{e}|1+\alpha|-\frac{3\pi}{4}$  is 


A) 8

B) 7

C) 9

D) 4



17.

Let m and n be two positive integers greater than 1. If $\lim_{\alpha \rightarrow0}\left(\frac{e^{\cos(\alpha^{n})}-e}{\alpha^{m}}\right)=-\left(\frac{e}{2}\right)$ ,then the value of $\frac{m}{n}$ is


A) 2

B) 3

C) 1

D) 4



18.

 Suppose that the foci of the ellipse   $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$  are (f1,0) and (f2, o) where f1>0 and f2<0 . Let P1   and P2 be two parabolas with a common vertex at (0,0) with foci at (f1,0) and (2f2,0)  respectively  .Let T1 be a tangent to P1 which passes through (2 f2,o) and T2 be  a tangent to P2. P2 which passes through (f1,0) . If m1 is the slop of T1  and m2 is the slope of T2, then the value of  $\left( \frac{1}{m_1^2}+m_2^2\right)$  is


A) 2

B) 4

C) 3

D) 5



19.

 The coefficient of x9   in the expansion of  $(1+x)(1+x^{2})+(1+x^{3}).......(1+x^{100})$  is


A) 5

B) 6

C) 9

D) 8



20.

Suppose that all the term of an arithmetic progression are natural numbers. If the ratio of the sum of first seven terms to the sum of the first eleven terms  is 6:11  and the seventh term lies in between 130 and 140, then the common difference of this AP is


A) 9

B) 8

C) 7

D) 4



<<12345>>