1)

 The coefficient of x9   in the expansion of  $(1+x)(1+x^{2})+(1+x^{3}).......(1+x^{100})$  is


A) 5

B) 6

C) 9

D) 8

Answer:

Option D

Explanation:

The coefficient of x9   in the expansion of 

      $(1+x)(1+x^{2})+(1+x^{3}).......(1+x^{100})$  = Terms having x9

 

 =  $[I^{99}.x^{9},I^{98}.x.x^{8},I^{98}.x^{2}.x^{7},I^{98}.x^{3}.x^{6}I^{98}.x^{4}.x^{5}$

          $I^{97}.x.x^{2}.x^{6}I^{97}.x.x^{3}.x^{5}I^{97}.x^{2}.x^{3}.x^{4}]$

  $\therefore$ coefficient of x9=8