1)

 Suppose that the foci of the ellipse   $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$  are (f1,0) and (f2, o) where f1>0 and f2<0 . Let P1   and P2 be two parabolas with a common vertex at (0,0) with foci at (f1,0) and (2f2,0)  respectively  .Let T1 be a tangent to P1 which passes through (2 f2,o) and T2 be  a tangent to P2. P2 which passes through (f1,0) . If m1 is the slop of T1  and m2 is the slope of T2, then the value of  $\left( \frac{1}{m_1^2}+m_2^2\right)$  is


A) 2

B) 4

C) 3

D) 5

Answer:

Option B

Explanation:

1132021124_m1.JPG

Tangent to P1 passes through

   (2f2,0)i.e, (-4,0)

  $\therefore  T_{1}:y=m_{1}x+\frac{2}{m_{1}}$

 $\Rightarrow$              $0=-4m_{1}+\frac{2}{m_{1}}$

$\Rightarrow$        $m_{1}^{2}=1/2$     ..........(i)

Also, tangent to  P2   passes through (f1,0) i.e, (2,0)

     $\Rightarrow$                $ T_{2}:y=m_{2}x+\frac{(-4)}{m_{2}}$

$\Rightarrow$                     $0=2m_{2}-\frac{4}{m_{2}}$

$\Rightarrow$               $m_2^2=2$

  $\therefore$    $\frac{1}{m_1^2}+m_2^2=2+2=4$