Answer:
Option B
Explanation:
Tangent to P1 passes through
(2f2,0)i.e, (-4,0)
$\therefore T_{1}:y=m_{1}x+\frac{2}{m_{1}}$
$\Rightarrow$ $0=-4m_{1}+\frac{2}{m_{1}}$
$\Rightarrow$ $m_{1}^{2}=1/2$ ..........(i)
Also, tangent to P2 passes through (f1,0) i.e, (2,0)
$\Rightarrow$ $ T_{2}:y=m_{2}x+\frac{(-4)}{m_{2}}$
$\Rightarrow$ $0=2m_{2}-\frac{4}{m_{2}}$
$\Rightarrow$ $m_2^2=2$
$\therefore$ $\frac{1}{m_1^2}+m_2^2=2+2=4$