Answer:
Option C
Explanation:
Here ,
$\alpha=\int_{0}^{1} e^{(9x+3\tan^{-1}x)}\left(\frac{12+9x^{2}}{1+x^{2}}\right)dx$
Put $9x+3\tan^{-1}x=1$
$\Rightarrow$ $\left(9+\frac{3}{1+x^{2}}\right)dx=dt$
$\therefore$ $\alpha=\int_{0}^{9+3\pi/4} e^{t}dt= \left[ e^{t}\right]_0^{9+3\pi/4}$
= $e^{9+3\pi/4}-1$
$\Rightarrow$ $\log_{e}|1+\alpha|=9+\frac{3\pi}{4}$
$\Rightarrow$ $\log_{e}|\alpha+1|-\frac{3\pi}{4}=9$