Answer:
Option D
Explanation:
As $\frac{1}{\lambda}= R\left(\frac{1}{n^{2}_{1}}-\frac{1}{n^{2}_{2}}\right)$
$\therefore$ $\frac{1}{\lambda}= R\left(\frac{1}{1^{2}}-\frac{1}{n^{2}_{}}\right)$
Mutliply both sides by $\lambda$
$1= \lambda R\left(1-\frac{1}{n^{2}_{}}\right)or \frac{1}{\lambda R}= 1-\frac{1}{n^{2}}$
or $ \frac{1}{n^{2}}=1-\frac{1}{\lambda R}=\frac{\lambda R-1}{\lambda R}$
or $n= \sqrt{\frac{\lambda R}{\lambda R-1}}$