<<12345>>
16.

 If a,b and c are three non-coplannar vectors , then (a+b-c).[(a-b) x(b-c) equals


A) 0

B) a.b x c

C) a.c x b

D) 3 a.b x c



17.

 The area bounded by the curves y= cos x and y= sin x between the ordinates x=0 and   $x=\frac{3\pi}{2}$  is


A) $(4\sqrt{2}-2)$ sq.units

B) $(4\sqrt{2}+2)$ sq.units

C) $(4\sqrt{2}-1)$ sq.units

D) $(4\sqrt{2}+1)$ sq. units



18.

 if  $a=\hat{i}-\hat{j}+2\hat{k}$   and  $b=2\hat{i}-\hat{j}+\hat{k}$ , then the angle $\theta$ between a and b s given by


A) $tan^{-1}(1)$

B) $\sin^{-1}(\frac{1}{2})$

C) $sec^{-1}(1)$

D) $tan^{-1}(\frac{1}{\sqrt{3}})$



19.

The normal at the point $(at_{1}^{2},2at^{}_{1})$   on the parabola meets the parabola again in the point  

$(at_{2}^{2},2at^{}_{2})$ , then 


A) $t_{2}=-t_{1}+\frac{2}{t_{1}}$

B) $t_{2}=-t_{1}-\frac{2}{t_{1}}$

C) $t_{2}=t_{1}-\frac{2}{t_{1}}$

D) $t_{2}=t_{1}+\frac{2}{t_{1}}$



20.

 If  $|z| \geq 3,$ then the least value of  $|z+\frac{1}{4}| $  is 


A) $\frac{11}{2} $

B) $\frac{11}{4} $

C) 3

D) $\frac{1}{4} $



<<12345>>