Answer:
Option A
Explanation:
Required area
$\int_{0}^{\frac{\pi}{4}} (\cos x-\sin x)dx+\int_{\pi/4}^{5\pi/4} (\sin x-\cos x)dx$
$\int_{5\pi/4}^{3\pi/2} (\cos x-\sin x)dx$
=$ \left[\sin x+\cos x\right]_{0}^{\pi/4}+[-cos x-sinx]^{5\pi/4}_{\pi/4}+[sin x+cos x]^{3\pi/4}_{5x/4}$
= $(4\sqrt{2}-2)$ sq.units