1)

The normal at the point $(at_{1}^{2},2at^{}_{1})$   on the parabola meets the parabola again in the point  

$(at_{2}^{2},2at^{}_{2})$ , then 


A) $t_{2}=-t_{1}+\frac{2}{t_{1}}$

B) $t_{2}=-t_{1}-\frac{2}{t_{1}}$

C) $t_{2}=t_{1}-\frac{2}{t_{1}}$

D) $t_{2}=t_{1}+\frac{2}{t_{1}}$

Answer:

Option B

Explanation:

 Equation of the normal at point  $(at_{1}^{2},2at^{}_{1})$ on parabola is

 $y=-t_{1}x+2at_{1}+at^{3}_{1}$

 It also passes through $(at_{2}^{2},2at^{}_{2})$

 So,  $2at_{2}=-t_{1}(at^{2}_{2})+2at_{1}+at^{3}_{1}$

 $\Rightarrow 2t_{2}-2t_{1}=-t_{1}(t^{2}_{2}-t^{2}_{1})$

$\Rightarrow t_{1}+t_{2}=\frac{-2}{t_{1}}$

$\Rightarrow t_{2}=-t_{1}-\frac{2}{t_{1}}$