Answer:
Option B
Explanation:
Equation of the normal at point $(at_{1}^{2},2at^{}_{1})$ on parabola is
$y=-t_{1}x+2at_{1}+at^{3}_{1}$
It also passes through $(at_{2}^{2},2at^{}_{2})$
So, $2at_{2}=-t_{1}(at^{2}_{2})+2at_{1}+at^{3}_{1}$
$\Rightarrow 2t_{2}-2t_{1}=-t_{1}(t^{2}_{2}-t^{2}_{1})$
$\Rightarrow t_{1}+t_{2}=\frac{-2}{t_{1}}$
$\Rightarrow t_{2}=-t_{1}-\frac{2}{t_{1}}$