1)

 If  $|z| \geq 3,$ then the least value of  $|z+\frac{1}{4}| $  is 


A) $\frac{11}{2} $

B) $\frac{11}{4} $

C) 3

D) $\frac{1}{4} $

Answer:

Option B

Explanation:

$|z+\frac{1}{4}| $

= $|z-\left(\frac{-1}{4}\right)| \geq|z|-|\frac{-1}{4}|$

=  $|(-z)-\left(\frac{1}{4}\right)| \geq|3-\frac{1}{4}|=\frac{11}{4}$

$\therefore$      $|z+\frac{1}{4}| \geq\frac{11}{4}$