12345>>
1.

The area bounded by $y=xe^{|x|}$ and lines |x|=1 , y=0 is 


A) 4 sq. units

B) 6 sq.units

C) 1 sq. units

D) 2 sq.units



2.

The area in the first quadrant between $x^{2}+y^{2}=\pi^{2}$  and $y= \sin x$ is 


A) $\frac{\pi^{3}-8}{4}$

B) $\frac{\pi^{3}}{4}$

C) $\frac{\pi^{3}-16}{4}$

D) $\frac{\pi^{3}-8}{2}$



3.

If l(m,n) = $\int_{0}^{1} t^{m}(1+t)^{n} dt, $ then the expression for l(m,n) in terms of l(m+1,n+1) is 


A) $\frac{2^{n}}{m+1}-\frac{n}{m+1}.l(m+1,n-1)$

B) $\frac{n}{m+1}.l(m+1,n-1)$

C) $\frac{2n}{m+1}+\frac{n}{m+1}.l(m+1,n-1)$

D) $\frac{m}{n+1}.l(m+1,n-1)$



4.

The value of $  \int_{0}^{\sqrt{2}} [x^{2}]dx$ , where [.] is the greatest integer function is 


A) $2- \sqrt{2}$

B) $2+\sqrt{2}$

C) $\sqrt{2}-1$

D) $\sqrt{2}-2$



5.

$  \int_{0}^{2x} (\sin x+|\sin x|)dx$ is equal to 


A) 0

B) 4

C) 8

D) 1



12345>>