1)

The value of $  \int_{0}^{\sqrt{2}} [x^{2}]dx$ , where [.] is the greatest integer function is 


A) $2- \sqrt{2}$

B) $2+\sqrt{2}$

C) $\sqrt{2}-1$

D) $\sqrt{2}-2$

Answer:

Option C

Explanation:

$\int_{0}^{\sqrt{2}} \left[x^{2}\right]dx=\int_{0}^{1} \left[x^{2}\right]dx+\int_{1}^{\sqrt{2}}\left[x^{2}\right]dx $

$=\int_{0}^{1} 0dx+\int_{1}^{\sqrt{2}}1dx $

  $= \left[x\right]_{1}^{\sqrt{2}}=\sqrt{2}-1$