Answer:
Option A
Explanation:
$x^{2}+y^{2}=\pi^{2}$ is a circle of radius $\pi$ and centre at the origin
Required of area= Area of circle (1 st quadrant) - $\int_{0}^{\pi} \sin x dx$
= $\frac{\pi \pi^{2}}{4}-[-\cos x]_{0}^{\pi}=\frac{\pi^{3}}{4}+(\cos \pi-\cos 0)$
=$ \frac{\pi^{3}}{4}+(-1-1)=\frac{\pi^{3}}{4}-2=\frac{\pi^{3}-8}{4}$