1) $ \int_{0}^{2x} (\sin x+|\sin x|)dx$ is equal to A) 0 B) 4 C) 8 D) 1 Answer: Option BExplanation:$ \int_{0}^{2x} (\sin x+|\sin x|)dx$ = $ \int_{0}^{\pi} (\sin x+\sin x)dx$+$ \int_{\pi}^{2 \pi} (\sin x-\sin x)dx$ =$ 2\int_{0}^{\pi} \sin x dx$+0=$ 2 \int_{0}^{\pi} \cos x dx$ = $-2(\cos \pi-\cos 0)=-2(-1-1)=4$