Answer:
Option D
Explanation:
Let $P( t_{1}^{2},2t_{1})$ and $Q( t_{2}^{2},2t_{2})$ are extremetre of chord
$\therefore$ $h=\frac{3 t_{1}^{2}+t_{2}^{2}}{4},k=\frac{6t_{1}+2t_{2}}{4}$
.Slope of PQ=2
$\therefore$ $2=\frac{2t_{1}-2t_{2}}{t_{1}^{2}-t_{2}^{2}}$
$t_{1}+t_{2}=1 $ $\Rightarrow t_{2}=1-t_{1}$
Put the value of $t_{2}$ in h and k , we get
$4h=3 t_{1}^{2}+(1-t_{1})^{2}, 4k=6t_{1}+2-2t_{1}$
$4h=4t_{1}^{2}-2t_{1}+1, 4k=4t_{1}+2$
Eliminating $t_{1}$ , we get
$4h=4\left(\frac{2k-1}{2}\right)^{2}-2\left(\frac{2k-1}{2}\right)+1$
$4h=4k^{2}-6k+3$
$\Rightarrow$ $\left(k-\frac{3}{4}\right)^{2}=4\left(h-\frac{3}{16}\right)$
$\therefore$ Vertex ($\frac{3}{16},\frac{3}{4})$