<<345678>>
26.

If the function f:R→ r  defined by

$f(x)=\begin{cases}a\left(\frac{1-\cos 2x}{x^{2}}\right), & for x < 0\\b ,& x = 0\\\frac{\sqrt{x}}{\sqrt{4+\sqrt{x}}-2}&for x>0\end{cases}$

 is continuous  at x=0 , then  a+b=


A) 2

B) 4

C) 6

D) 8



27.

If  a triangle ABC with two vertices A(5,4,6) and B(1,-1,3) has its centroid  at ($\frac{10}{3},2,\frac{11}{3})$ then the third vertex C is 


A) (4,2,3)

B) (-4,-3,2)

C) (4,3,2)

D) (2,4,3)



28.

If the locus of a point which divides a chord with slope 2 of the parabola $y^{2}=4x$ , internally in the ratio 1:3 is a parabola , then its vertes is 


A) (2,1)

B) ($\frac{3}{16},\frac{3}{2})$

C) ($\frac{3}{4},\frac{3}{16})$

D) ($\frac{3}{16},\frac{3}{4})$



29.

The equation of a circle  concentric with the circle $x^{2}+y^{2}-6x+12y+15=0$ and having area that is twice the area of the given circle is 


A) $x^{2}+y^{2}-6x+12y-15=0$

B) $x^{2}+y^{2}-6x+12y-30=0$

C) $x^{2}+y^{2}-6x+12y-60=0$

D) $x^{2}+y^{2}-6x+12y+15=0$



30.

Let   $\lim_{t \rightarrow 0}(1+5t)^{1/t}=K$ and X be the random variable representing number of successes in 100 independent trails .If the probability  of success in each trial is 0.05  ,then the probability of getting  at least  one success is 


A) $\frac{1-K}{K}$

B) $\frac{K-1}{K}$

C) $\frac{K+1}{2K}$

D) $\frac{5K+2}{7K}$



<<345678>>