Answer:
Option B
Explanation:
Since , the minimum value of
f(x)= $2x^{2}+\alpha x+8$ is $\frac{\alpha^{2}-64}{8}=\frac{64-\alpha^{2}}{8}$
And the maximum value of g(x)= $-3x^{2}-4x+\alpha^{2}$
is $-\frac{12\alpha^{2}-16}{-12}=\frac{16+12\alpha^{2}}{12}$
Now, according to the question
$\frac{64-\alpha^{2}}{8}=\frac{16+12\alpha^{2}}{12}$
$\Rightarrow$ $192-3 \alpha^{2}=32+24 \alpha^{2}$
$\Rightarrow$ $27 \alpha^{2}=160 \Rightarrow \alpha^{2}= \frac{160}{27}$
hence3, option(b) is correct