Answer:
Option B
Explanation:
We have
$\lim_{t \rightarrow 0}(1+5t)^{1/t}=K$
$\Rightarrow$ $K= e^{\lim_{t \rightarrow 0}\frac{5t}{t}}=e^{5}$
Here, n=100 , p=0.05
$\lambda$=np=5
$P(X\geq1)=1-P(X=0)=1-e^{-5}$
$P(X\geq1)=\frac{e^{5}-1}{e^{5}}=\frac{K-1}{K}$