1) If the function f:R→ r defined by f(x)={a(1−cos2xx2),forx<0b,x=0√x√4+√x−2forx>0 is continuous at x=0 , then a+b= A) 2 B) 4 C) 6 D) 8 Answer: Option CExplanation:We have, f(x)={a(1−cos2xx2),forx<0b,x=0√x√4+√x−2forx>0 f(x) is continuous at x=0 ∴ limx→0−f(x)=f(0) limx→0−a(1−cos2x)x2=b limx→0a(2sin2x)x2=b ⇒ 2a=b Also, limx→0+f(x)=b ∴ limx→0√x√4+√x−2=b ⇒limx→0√x(√4+√x+2)√x=b ⇒ 4=b , a=2 ∴ a+b=2+4=6