Answer:
Option C
Explanation:
We have,
f(x)={a(1−cos2xx2),forx<0b,x=0√x√4+√x−2forx>0
f(x) is continuous at x=0
∴ lim
\lim_{x \rightarrow{0^{-}}}\frac{a(1- \cos 2x)}{x^{2}}=b
\lim_{x \rightarrow{0^{}}}\frac{a(2 \sin^{2} x)}{x^{2}}=b
\Rightarrow 2a=b
Also, \lim_{x \rightarrow{0^{+}}}f(x)=b
\therefore \lim_{x \rightarrow{0^{}}}\frac{\sqrt{x}}{\sqrt{4+\sqrt{x-2}}}=b
\Rightarrow\lim_{x \rightarrow{0^{}}}\frac{\sqrt{x}(\sqrt{4+\sqrt{x}}+2)}{\sqrt{x}}=b
\Rightarrow 4=b , a=2
\therefore a+b=2+4=6