Loading [MathJax]/jax/element/mml/optable/BasicLatin.js


1)

If the function f:R→ r  defined by

f(x)={a(1cos2xx2),forx<0b,x=0x4+x2forx>0

 is continuous  at x=0 , then  a+b=


A) 2

B) 4

C) 6

D) 8

Answer:

Option C

Explanation:

We have, 

  f(x)={a(1cos2xx2),forx<0b,x=0x4+x2forx>0

f(x) is continuous at x=0

    lim

\lim_{x \rightarrow{0^{-}}}\frac{a(1- \cos 2x)}{x^{2}}=b

\lim_{x \rightarrow{0^{}}}\frac{a(2 \sin^{2} x)}{x^{2}}=b

 \Rightarrow   2a=b

 Also,    \lim_{x \rightarrow{0^{+}}}f(x)=b

 \therefore     \lim_{x \rightarrow{0^{}}}\frac{\sqrt{x}}{\sqrt{4+\sqrt{x-2}}}=b

 \Rightarrow\lim_{x \rightarrow{0^{}}}\frac{\sqrt{x}(\sqrt{4+\sqrt{x}}+2)}{\sqrt{x}}=b

\Rightarrow   4=b , a=2

 \therefore a+b=2+4=6