<<12345>>
11.

Let E1 Eand FFbe the chords of S passing through the point P(1,1) and parallel to the X-axis and the Y-axis, respectively. Let GG be the chord of S passing through Pand having slope -1. Let the tangents to S at Eand Emeet at E3, then tangents to S at Fand  Fmeet at F3, and the tangents to S at Gand G meet at G3. Then, the points E3, F3, and G3 lie on the curve


A) x+y=4

B) $(x-4)^{2}+(y-4)^{2}=16$

C) (x-4)(y-4)=4

D) xy=4



12.

A farmer F has a land in the shape of a triangle  with vertices  at P(0,0), Q(1,1), and R (2,0). From this land, a neighbouring farmer F takes away the region  which lies between the sides PQ and a curve of the form y=x(n>1). If the area of the region taken away by the farmer F is exactly 30% of the area Δ PQR , then the value of n is........


A) 5

B) 4

C) 2

D) 1



13.

Let a,b,c  be three non-zero  real  numbers such that the equation  $\sqrt{3} a \cos x+2b \sin x= c$ , $x\in[-\frac{\pi}{2},\frac{\pi}{2}]$, has two distinct real roots $\alpha$ and $\beta$  with $\alpha$ + $\beta$= $\frac{\pi}{3}$ , Then , the value of $\frac{b}{a}$ is.....


A) 0.5

B) 0.75

C) 1.5

D) 1



14.

Let a and b be two unit vectors such that a.b=0. For some x,y $\in$ R, let c=xa+yb+ (a× b) . If  $\mid c\mid=2$ and the vector c is inclined at the same angle $\alpha$ to both a and b, then the value of $8\cos^{2}\alpha$  is


A) 2

B) 3

C) 1

D) 5



15.

For each positive integer n,  let $y_{n}=\frac{1}{n}((n+1)(n+2)...(n+n))^{\frac{1}{n}}. $. For x ε R, let [x] be the greatest integer less than or equal to x. If $ \lim_{n \rightarrow\infty} y_{n}=L$, then the value of [L] is ...........


A) 2

B) 5

C) 3

D) 1



<<12345>>