Answer:
Option A
Explanation:
We have $\alpha$ and $\beta$ are the roots of
$\sqrt{3} a \cos x+2b \sin x= c$
$\therefore$ $\sqrt{3}a \cos \alpha +2b \sin \alpha=c$ .....(i)
and $\sqrt{3}a \cos \beta +2b \sin \beta=c$ .......(ii)
On substracting Eq. (ii) from Eq. (i) , we get
$\sqrt{3}a ( \cos \alpha-\cos \beta)+2b(\sin\alpha-\sin \beta)=0$
$\Rightarrow$ $\sqrt{3}a (-2\sin(\frac{\alpha+\beta}{2}))\sin(\frac{\alpha-\beta}{2}) +2b (2\cos(\frac{\alpha+\beta}{2}))\sin(\frac{\alpha-\beta}{2})=0$
$\Rightarrow$ $\sqrt{3}a \sin(\frac{\alpha+\beta}{2})=2b\cos(\frac{\alpha+\beta}{2})$
$\Rightarrow$ $\tan(\frac{\alpha+\beta}{2})=\frac{2b}{\sqrt{3}a}$
$\Rightarrow$ $\tan(\frac{\pi}{6})=\frac{2b}{\sqrt{3}a}$ [ $\therefore$ $\alpha$ + $\beta$= $\frac{\pi}{3}$, given ]
$\Rightarrow$ $\frac{1}{\sqrt{3}}=\frac{2b}{\sqrt{3}a}\Rightarrow \frac{b}{a}=\frac{1}{2}$
$\Rightarrow$ $\frac{b}{a}=0.5$