Answer:
Option B
Explanation:
Given , force F= -kv2
$\therefore$ Acceleration, a= $\frac{-k}{m}v^{2}$
or $\frac{\text{d}v}{\text{d}t}= \frac{-k}{m}v^{2}\Rightarrow \frac{dv}{v^{2}}=-\frac{k}{m}dt$
Now with limits , we have
$\int_{10}^{v} \frac{dv}{v^{2}}= -\frac{k}{m}\int_{0}^{t}dt $
$\Rightarrow \left(- \frac{1}{v}\right)_{10}^{v}= -\frac{k}{m}t\Rightarrow \frac{1}{v} = 0.1+\frac{kt}{m}$
$\Rightarrow v= \frac{1}{0.1+\frac{kt}{m}}= \frac{1}{0.1+1000k}$
$\Rightarrow \frac{1}{2}\times m\times v^{2}=\frac{1}{8}mv_{0}^{2}$
$\Rightarrow v=\frac{v_{0}}{2}=5$
$\Rightarrow \frac{1}{0.1+1000k}=5\Rightarrow 1=0.5+5000k$
$\Rightarrow k=\frac{0.5}{5000}\Rightarrow k=10^{-4}kg/m$